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Overview

Response Propensity

 the theoretical probability of a sampled unit/group to respond to a
survey protocol

* necessary for monitoring (Kreuter 2013) and adapting (Schouten et al.
2017) survey designs

* relates nonresponse to bias in a survey estimate

* estimated by a multivariate statistical model
e provides the point estimate
e without acknowledging the uncertainty



Overview

Recent Research Accounts for Uncertainty in Response Propensity(RP)
Predictions

* In time stable context

* Existing internal historic data sets
* Bayesian (Schouten et al., 2018) updates predictions

e Access to external historic data sets

» Expert elicitation of data collection manager (Coffey et al., 2020) or staff (Wu et al., 2021)
constructs prior knowledge

* |In time-series context

* Observe time change in response rates (e.g., downward trend, seasonality, etc.)
* |In a mixed-mode survey, modeling RP at each mode can benefit the adaption of survey designs



Research Question (RQ)

1. What time-series factors contribute to the variation and mode-
related correlation in RPs?

2. How prediction accuracy depends on the length of historic survey
time series?



Time-series Model

A Bayesian Multilevel Time-series Model (Boonstra & van den Brakel,
2019)

* |dentify potential time-series factors linked to variations and
correlations

* Use logit transformation for [0,1] response propensities to infinite
signal

* Signal takes the linear regression of identified factors



The Dutch Health Survey (GEZO)

e A stratification of Age and Ethnicity forms 13 subgroups, each of them approached
via Web and then F2F

* For RQ1

e 2014 — 2019 Web historic data to select the “best” model by criteria

* The widely applicable information criterion (WAIC) for a reasonable balance between model fit, model
complexity and efficient computation

e posterior predictive p-values of mean and variance to check model adequacy

e 2014 — 2017 Web-F2F data to analyze if each of the “best” model components is reasonably
correlated with mode

* For RQ2

e 2014 — 2019 Web historic data to evaluate the length-dependent performance by criteria
* Root mean squared error (RMSE), bias (B), and standard deviation (SD)

 Compare the length-dependent performance of F2F evaluated by F2F data to Web-F2F data of
2014-2017, i.e., individual model vs overall model



RQ1: Primary Time-series Model Components
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Figure 1.1. Optimize the model components by cumulatively adding the
current factor to its left side. The “best” formulation with minimum Figure 1.2. T-values of correlations in RPs between Web and F2F are
WAIC (Widely Appliable Information Criteria) and close-to-0.5 mean of  |earned from cumulative historic data.
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posterior predictive p-value (ppp).
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RQ2: Prediction accuracy as a function of time length
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Figure 2.1. Quarter-averages of Web prediction accuracy in different
historic time window. The accuracy is estimated by without-correlation
model. The “dotted” RMSE defined by the posterior mean of the
binomial variance is a lower bound.
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Figure 2.2. Quarter-averages of F2F prediction accuracy in different
historic time window. “Individual” is a separate F2F RP model from
Web. “Overall” is a RP model accounting for the correlation between
Web and F2F. 9



Discussion

* A time series approach is sensitive to sudden external events and
redesigns of a survey. How can the models be made more robust?

* We found relatively low correlations between web response
propensities and face-to-face response propensities. How to improve
the model that may better grasp any relations between the two
modes?

* The stratification is not determined by variable selection. How does
the model performance to such stratification?

* Next step is to construct an optimization problem in a Bayesian
framework. The objective is to maximizing the performance of an
adaptive survey against a non-adaptive survey.
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