

Evaluation of non-pharmaceutical interventions during the COVID-19 first wave in the Netherlands

Mark Dekker **Utrecht University**, Erasmus MC, CBS

Bron: NICE via RIVM

National or regional?

Behaviour or regulated?

School closure?

An individual-based model

Identify agents and mobility **Step 1** (SI 1.1.1) **Step 2** (SI 1.1.2) Determine inter-municipality travel, Identify 11 demographic groups using mobile phone signalling data per municipality using demography data Dirichlet parameters Home Municipalities Municipalities Other VVork Time of day Step 3 (SI 1.1.3) **Step 4** (SI 1.1.4) Generate agent hourly movements Infer mixing situations based on using Dirichlet distributions demography, time and location

Findings

- Reproduction observed evolution fairly accurate
- Interventions to some extent separable
- Mobility reduction crucial in national interventions
- Regional interventions may have been more optimal

Thank you for your attention

Mark Dekker (mark.dekker@pbl.nl)

Annex: Google Mobility

Annex: PIENTER mixing matrices

Annex: Model setup

$$S \xrightarrow{\lambda} E \xrightarrow{\rho} I \xrightarrow{\gamma} R$$

$$\rho = \frac{1}{\text{incubation time}}$$

$$\gamma = \frac{1}{\text{infectious time}}$$

$$\gamma = \frac{1}{\text{infectious time}}$$
 $\lambda_p(t) = \sum_g \beta'(t, g, p) \frac{I_{gm}(t)}{N_{gm}(t)}$

$$\beta'(t, g, p) = d(t) \cdot n_{pg} \cdot \beta_0 \cdot s_p$$

Annex: Force of infection

Eindhoven

Annex: Demographic and geographic evolution (non-intervention run)

