### Weighted multiple - recapture

How to correct for linkage errors?

#### **Daan Zult**

In cooperation with Bart Bakker, Peter-Paul de Wolf, Jan van der Laan and Peter van der Heijden

Innovatiedag, Den Haag, November 26



# The problem: How many fish are in the pond?





#### Classic solution: Capture - recapture

 First applied by Johannes Petersen in 1896 when he was investigating the migration of young plaice (schol in Dutch) into the Limfjord from the German sea (nowadays

North Sea).





#### Simple example

#### Frequency table

| Capture 1 | Capture 2 | Number of fish |
|-----------|-----------|----------------|
| 1         | 1         | 100            |
| 1         | 0         | 200            |
| 0         | 1         | 50             |
| 0         | 0         | ?              |

? = 
$$\frac{200*50}{100}$$
 = 100 More general for the total number of fish:  $\hat{N} = \frac{n_{1+}n_{+1}}{n_{11}}$ 

Or equivalent use log - linear Poisson regression, i.e. fit:

Number of fish =  $\exp(\beta_0 + \beta_1 \text{Capture1} + \beta_2 \text{Capture2})$ 

$$? = \exp(\beta_0)$$

Advantage: easy to add captures and covariates.



#### **Example of linkage errors**

Petersen made small holes in the fins of the plaice to mark them.

Problem: hard to see -> linkage errors

- A hole may be missed (missed match)
- A natural hole may be identified as a mark (mismatch)

| Capture 1 | Capture 2 | Number of fish, real | Number of fish, observed |
|-----------|-----------|----------------------|--------------------------|
| 1         | 1         | 100                  | 90                       |
| 1         | 0         | 200                  | 210                      |
| 0         | 1         | 50                   | 60                       |
| 0         | 0         | ?                    | ?*                       |

$$?^* = \frac{210*60}{90} = 140 \neq 100$$



## Our problem: How many people are in the Netherlands?



- Captures are registers
- Multiple registers due to register dependence
- Use of covariates (age, sex, etc.) due to different capture probabilities
- Linkage errors due to wrong or missing information



#### A linkage error correction method.

by Ding & Fienberg (1994) and Di Consiglio and Tuoto (2015)

 Idea: Use small audit sample and apply both probabilistic and deterministic linkage.

• Calculate probability of missed match  $(\alpha)$ 



Calculate probability of mismatch (β)



• Use  $\alpha$  and  $\beta$  to correct population size estimate.



#### Three problems

- 1. Very complex, hard to grasp
- 2. Does not consider covariates
- 3. Can only be applied with two captures
- Step 1: Simplify
  - From pages of formulas to:  $\widehat{N}_{corrected} = \frac{n_{1+}n_{+1}}{E[n_{11}]}$



#### **Step 2: Add covariates**

| Aud | lit | sa | m | pl  | le: |
|-----|-----|----|---|-----|-----|
|     |     |    |   | I - |     |

| C1 | <b>C2</b> | x | $n^*$       | $m^*$                |
|----|-----------|---|-------------|----------------------|
| 1  | 1         | 1 | $n_{111}^*$ | $m_{111}^*$          |
| 1  | 0         | 1 | $n_{101}^*$ | $m_{101}^*$          |
| 0  | 1         | 1 | $n_{011}^*$ | $m_{011}^*$          |
| 1  | 1         | 0 | $n_{110}^*$ | $m_{110}^*$          |
| 1  | 0         | 0 | $n_{100}^*$ | $m_{100}^*$          |
| 0  | 1         | 0 | $n_{010}^*$ | $m_{010}^*$          |
| C1 | C2        | x | n           | $\widehat{m} = E[n]$ |

Frequency table

|           | _         | Ŭ | 1,010     | 010                          |  |
|-----------|-----------|---|-----------|------------------------------|--|
| <b>C1</b> | <b>C2</b> | x | n         | $\widehat{m} = E[n]$         |  |
| 1         | 1         | 1 | $n_{111}$ | $n_{111}m_{111}^*/n_{111}^*$ |  |
| 1         | 0         | 1 | $n_{101}$ | $n_{101}m_{101}^*/n_{101}^*$ |  |
| 0         | 1         | 1 | $n_{011}$ | $n_{011}m_{011}^*/n_{011}^*$ |  |
| 1         | 1         | 0 | $n_{110}$ | $n_{110}m_{110}^*/n_{110}^*$ |  |
| 1         | 0         | 0 | $n_{100}$ | $n_{100}m_{100}^*/n_{100}^*$ |  |
| 0         | 1         | 0 | $n_{010}$ | $n_{010}m_{010}^*/n_{010}^*$ |  |
|           |           |   |           |                              |  |



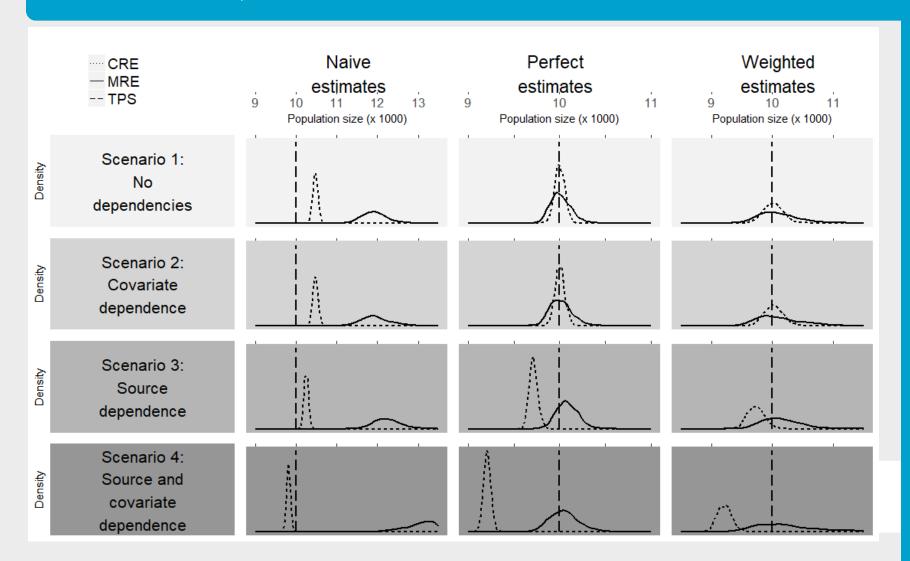


#### Obtain individual weights

$$w_i = \frac{\widehat{m}_{111}}{n_{111}}$$

• Aggregate over  $w_i$  to get linkage error corrected frequency table.

### Step 3: Add captures by updating $w_i$


$$w_{i,t} = w_{i,t-1} \frac{\widehat{m}_{111,t}}{n_{111,t}}$$

- $w_{i,t}$  has interpretation of regular sample weight
- Aggregate over w<sub>i,t</sub> to get linkage error corrected frequency table with multiple captures.
- $\hat{m} = \exp(\beta_0 + \beta_1 C1 + \beta_2 C2 + \beta_3 C3)$
- $\bullet \ \widehat{m}_{000} = \exp(\beta_0)$

| <b>C1</b> | <b>C2</b> | С3 | $\widehat{m}$              |
|-----------|-----------|----|----------------------------|
| 1         | 1         | 1  | $\sum_{i \in 111} w_{i,t}$ |
| 1         | 1         | 0  | $\sum_{i \in 110} w_{i,t}$ |
| 1         | 0         | 1  | $\sum_{i \in 101} w_{i,t}$ |
| 1         | 0         | 0  | $\sum_{i \in 100} w_{i,t}$ |
| 0         | 1         | 1  | $\sum_{i \in 011} w_{i,t}$ |
| 0         | 1         | 0  | $\sum_{i \in 010} w_{i,t}$ |
| 0         | 0         | 1  | $\sum_{i \in 001} w_{i,t}$ |
| 0         | 0         | 0  | ?                          |



## Nice theory, but does it work? 2 models, 3 estimates and 4 scenarios.



#### Thank you for your attention!

Extensive treatment on this subject can be found at: <a href="https://www.cbs.nl/en-gb/background/2019/19/correcting-for-linkage-errors-in-the-multiple-capture">https://www.cbs.nl/en-gb/background/2019/19/correcting-for-linkage-errors-in-the-multiple-capture</a>

Any further questions?

Contact information: db.zult@cbs.nl